

Working Scientifically Skills Progression

EYFS

While children are playing and exploring, teachers should be modelling, encouraging and supporting them to do the following:

• show curiosity and ask questions • make observations using their senses and simple equipment • make direct comparisons • use equipment to measure • record their observations by drawing, taking photographs, using sorting rings or boxes and, in Reception, on simple tick sheets • use their observations to help them to answer their questions • talk about what they are doing and have found out • identify, sort and group.

Year 1 and 2

KS1 Statutory requirements from NC.

During years 1 and 2, pupils should be taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content: • asking simple questions and recognising that they can be answered in different ways • observing closely, using simple equipment • performing simple tests • identifying and classifying • using their observations and ideas to suggest answers to questions • gathering and recording data to help in answering questions.

Year 3 and 4

Lower KS2 Statutory requirements from NC.

During years 3 and 4, pupils should be taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content: • asking relevant questions and using different types of scientific enquiries to answer them • setting up simple practical enquiries, comparative and fair tests • making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers • gathering, recording, classifying and presenting data in a variety of ways to help in answering questions. recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables • reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions • using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions • identifying differences, similarities or changes related to simple scientific ideas and processes • using straightforward scientific evidence to answer questions or to support their findings.

Year 5 and 6

Upper KS2 Statutory requirements from NC.

During years 5 and 6, pupils should be taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content: • planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary • taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate • recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs. • using test results to make predictions to set up further comparative and fair tests • reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations • identifying scientific evidence that has been used to support or refute ideas or arguments.

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Asking and answering questions	Use everyday language/begin to use simple scientific words to ask or answer a scientific question.	Suggest ideas, ask simple questions and know that they can be answered/investigated in different ways including simple secondary sources, such as books and video clips.	Use ideas to pose questions, independently, about the world around them.	Suggest relevant questions and know that they could be answered in a variety of ways, including using secondary sources such as ICT. Answer questions using straight forward scientific evidence.	Raise different types of scientific questions, and hypotheses.	Pose/select the most appropriate line of enquiry to investigate scientific questions.
Making predictions	Begin to say what might happen in an investigation.	Begin to make predictions.	Make predictions and begin to give a reason.	Make predictions and give a reason using simple scientific vocabulary.	Make predictions and give a reason using scientific vocabulary.	Make predictions and give a reason using scientific vocabulary. Base predictions on findings from previous investigations.
Making observations	Observe objects, materials and living things and describe what they see.	Observe something closely and describe changes over time.	Make decisions about what to observe during an investigation.	Make systematic and careful observations.	Plan and carry out comparative and fair tests, making systematic and careful observations.	Make their own decisions about which observations to make, using test results and observations to make predictions or set up further comparative or fair tests.

Fauinment	Use simple, nonstandard	Use simple	Take accurate	Take accurate measurements	Take	Choose the most
end	equipment and	equipment, such as	measurements	using standard units and a	measurements	appropriate
and	measurements in a	hand lenses or egg	using standard	range of equipment, including	using a range of	equipment in
measurements	practical task.	timers to take	units.	thermometers and data	scientific	order to take
		measurements, make		loggers.	equipment with	measurements,
		observations and carry			increasing	explaining how
		out simple tests.			accuracy and	to use it
					precision.	accurately.
						Decide how long
						to take
						measurements
						for, checking
						Science Working
						Scientifically
						Skills
						Progression
						results with
						additional
						readings.
Identifying	Sort and group objects,	Decide, with help, how	Talk about criteria	Identify	Use and develop	Identify and
and classifying	materials and living	to group materials,	for grouping,	similarities/differences/changes	keys to identify,	explain patterns
	things, with help,	living things and	sorting and	when talking about scientific	classify and	seen in the
	according to simple	objects, noticing	categorising,	processes. Use and begin to	describe living	natural
	observational features.	changes over time and	beginning to see	create simple keys.	things and	environment.
		beginning to see	patterns and		materials.	
		patterns.	relationships.			
Engage in	Follow instructions to	Do things in the	Discuss enquiry	Make decisions about different	Plan a range of	Select and plan
practical	complete a simple test	correct order when	methods and	enquiries, including recognising	science	the most
enquiry	individually or in a group.	performing a simple	describe a fair	when a fair test is necessary	enquiries,	suitable line of
		test and begin to	test.	and begin to identify variables.	including	enquiry,
(investigating)		recognise when			comparative	explaining which
		something is unfair.			and fair tests.	variables need
						to be controlled

						and why, in a
						variety of
						comparative and
						fair tests.
Recording and	Begin to record simple	Gather data, record	Record their	Choose appropriate ways to	Record data and	Choose the most
reporting	data. Talk about their	and talk about their	findings using	record and present	results of	effective
findings	findings and explain what	findings, in a range of	scientific	information, findings and	increasing	approach to
indings	they have found out.	ways, using simple	language and	conclusions for different	complexity using	record and
		scientific vocabulary.	present in note	audiences (e.g. displays, oral or	scientific	report results,
			form, writing	written explanations).	diagrams, labels,	linking to
			frames, diagrams,		classification	mathematical
			tables and charts.		keys, tables, bar	knowledge.
					and line graphs	
					and models.	
Drawing	Explain, with help, what	Use simple scientific	Draw, with help, a	Use recorded data to make	Use a simple	Identify validity
conclusions	they think they have	language to explain	simple conclusion	predictions, pose new	mode of	of conclusion
	found out.	what they have found	based on	questions and suggest	communication	and required
		out.	evidence from an	improvements for further	to justify their	improvement to
			enquiry or	enquiries.	conclusions on a	methodology.
			observation.		hypothesis.	Discuss how
					Begin to	scientific ideas
					recognise how	develop over
					scientific ideas	time.
					change over	
					time.	
Analysing data	Use every day or simple	Identify simple	Gather, record	Identify, with help, changes,	Use relevant	Identify and
	scientific language to ask	patterns and/or	and use data in a	patterns, similarities and	scientific	explain causal
	and/or answer a question	relationships using	variety of ways to	differences in data to help form	language and	relationships in
Evaluating and	on given data.	simple comparative	answer a simple	conclusions. Use scientific	illustrations to	data and
raising further		language.	question.	evidence to support their	discuss,	identify
questions and				findings.	communicate	evidence that
nredictions					and justify their	supports or
predictions					scientific ideas.	refutes their

			findings,
			selecting fact
			from opinion.

Key Stage 1	Lower Key Stage 2	Upper Key Stage 2
experience	develop	variables
observe	enquiry	evidence
changes	practical	justify
patterns	enquiry	accuracy
grouping	fair test	precision
sorting	comparative test	scatter graphs
classifying	relationships	bar graphs
compare	conclusion	line graphs
identify (name)	accurate	argument
data	thermometer	causal relationship
measure	data logger	
record	estimate	
equipment	data	
questions	diagram	
test	key	
investigate	table	
explore	chart	
magnifying glass / hand lens	bar chart	
same	results	
different	predictions	
	explanation	

reason	
similarity	
difference	
question	
evidence	
information	
findings	
criteria	
values	
properties	
characteristics	